-	
D	93665

P	a	g	es	:	3)
		0		-		,

Name.....

Reg. No....

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE [2014 SCHEME] EXAMINATION, NOVEMBER 2020

EN 19 301—ENGINEERING MATHEMATICS – III

Time: Three Hours

Maximum: 100 Marks

Part A

Answer any **ten** questions. Each question carries 5 marks.

- 1. Let $H = \{(a+3b, a-b, 2a-b, 4b)^T : a, b \in R\}$. Show that H is a subspace of R^4 .
- 2. Prove that (1,3,4,2), (3,-5,2,2) and (2,-1,3,2) in \mathbb{R}^4 are linearly dependent over \mathbb{R} .
- 3. Find the orthogonal complement of the plane spanned by the vectors (1,1,2) and (1,2,3).
- 4. Find the Fourier transform of:

$$f(x) = \begin{cases} e^{2ix}, -1 < x < 1 \\ 0 \text{, otherwise.} \end{cases}$$

5. Find the Fourier cosine transform of:

$$f(x) = \begin{cases} \sin x & \text{in } 0 < x < \pi \\ 0 & \text{otherwise.} \end{cases}$$

6. Find the Fourier sine transform of:

$$f(x) = \begin{cases} x^2 & \text{if } 0 < x < 1 \\ 0 & \text{if } x > 1. \end{cases}$$

- 7. Find the Laplace transform of $te^{-t}\cos 2t$.
- 8. Find the inverse Laplace transform of $\frac{2}{s^2 + \frac{s}{3}}$.
- 9. Find $L^{-1}\left(\log\left(\frac{s+a}{s-b}\right)\right)$.

- 10. Prove that $J_{-n}(x) = (-1)^n J_n(x)$ where n is a positive integer.
- 11. Prove that $xJ'_n nJ_n + xJ_{n-1}$.
- 12. Show that $\frac{d}{dx}(x^{-n}J_n(x)) = -x^{-n}J_{n+1}(x)$.
- 13. Solve $z^2(p^2+q^2+1)=c^2$.
- 14. Solve the pde $p^2y(1+x^2) = qx^2$.
- 15. Solve the pde $x^2(y-z)p+y^2(z-x)q=z^2(x-y)$.

 $(10 \times 5 = 50 \text{ marks})$

Part B

Answer **one** full section of each questions. Each question carries 10 marks.

16. (a) Show that $\mathcal{B}_1 = \{(1,1,1), (0,2,3), (0,2,-1)\}$ and $\mathcal{B}_2 = \{(1,1,0), (1,-1,0), (0,0,1)\}$ are two bases of \mathbb{R}^3 . Find the co-ordinate vector of v = (3,5,-2) relative to \mathcal{B}_1 and \mathcal{B}_2 .

Or

- (b) Find an orthonormal basis for R^3 from (1,0,1),(1,0,0),(2,1,0) by Gram–Schmidt process.
- 17. (a) Find the Fourier sine and cosine integral representation of $f(x) = \begin{cases} 1-x^2, 0 < x < 1 \\ 0, x > 1. \end{cases}$

Or

(b) Using Fourier integral representation show that:

$$\int_{0}^{\infty} \frac{\cos wx + w \sin wx}{1 + w^{2}} dw = \begin{cases} 0 & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0. \end{cases}$$

18. (a) Solve y'' - 3y' + 2y = 4t - 8, y(0) = 2, y'(0) = 7.

Or

- (b) Find Laplace transform of:
 - (i) $\frac{\cos 2t \cos 3t}{t}$
- (ii) $t^2\cos(3t-5)$.
- 19. (a) Solve in series the equation $\frac{d^2y}{dx^2} + x^2y = 0$ by Frobenius method.

Or

(b) Solve in series the equation:

$$2x^{2}\frac{d^{2}y}{dx^{2}} + \left(2x^{2} - x\right)\frac{dy}{dx} + y = 0.$$

20. (a) Derive the one dimensional heat equation.

Or

(b) Solve the one dimensional wave equation by the method of separation of variables.

 $(5 \times 10 = 50 \text{ marks})$

D	93665	-A
v	3000 0	- A

(Pages: 3)

Name.....

Reg. No.....

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE [2019 SCHEME] EXAMINATION, NOVEMBER 2020

EN 19 302—DISCRETE COMPUTATIONAL STRUCTURE

Time: Three Hours

Maximum: 100 Marks

Part A

Answer any ten questions.

Each question carries 5 marks.

- 1. State the properties of Binary Operations.
- 2. How many rows are needed in the truth table of given statement:

a)
$$p \mid p$$
; and b) $(p^{\wedge} \mid r)$.

- 3. Prove $[(A \rightarrow B) \land A] \rightarrow B[(A \rightarrow B) \land A] \rightarrow B$ is a tautology.
- 4. Explain Quantifiers and its types
- 5. Show (Z+J) is a POSET.
- 6. Write an order of an element. Give example.
- 7. Prove that $(p^p)^q$ is a contradiction.
- 8. Obtain PCNF of $P \rightarrow (P^{\wedge}(Q \rightarrow P))$.
- 9. $1.2^0 + 2.2^1 + 3.2^2 + \dots n.2^{\eta-1} = (n-1)2^{\eta} + 1$ for all positive integers.
- 10. Every cyclic group is Abelian. Explain.
- 11. Prove that every element of Sn (n > 1) can be written as a product of elements of the form (1k).
- 12. Any right cosets of H in G are eithe disjoint or identical. Justify.
- 13. Show that monoid homomorphism preserves the property of invertability.

- 14 Define Subgroup. Give Example.
- 15 Explain the ring with zero and without zero divisor.

 $(10 \times 5 = 50 \text{ marks})$

Part B

Answer one full section from each question. Each question carries 10 marks.

- 16. a) i) Using Indirect method, prove that $P \rightarrow R$, $Q \rightarrow S$, $P \lor Q \Rightarrow S \lor R$.
 - ii) What is the direct proof of the above? Illustrate.

Or

- b) $(p \rightarrow R) \land (Q \leftrightarrow P)$. Obtain PCNF and PDNF. Show by using Laws of Propositions.
- 17. a) Let be given finite set and P(A) its power set. Let \leq be the inclusion relation on the elements of P(A). Draw hasse diagram of $(P(A), \leq)$ for :
 - (a) $A = \{a\}$; (b) $A = \{a\}$; and (c) $A = \{a, b, c\}$.

Or

- b) Draw Hasse diagram for (D12,/).
- 18. a) State and explain Lagrange's Theorem.

Or

- b) i) Let G = (1, -1, i, -i) is a group under multiplication and H = (1, -1) is a subgroup of G.

 Give left coset.

 (5 marks)
 - ii) If G is a finite group of order n, then $a^{\eta} = e$ for any $a \pounds G$.

(5 marks)

19. a) What is necessary and sufficient conditions of subgroup?

Or

b) Let (G, A) and (G', 0) be two groups. Let $f : G \to G'$ be a homomorphism of groups with kernel K. Then G/K is isomorphic to $f(G) \le G'$.

20. a) Prove that the set $Z_4 = (0, 1, 2, 3, 4)$ is a commutative ring with respect to the binary operation t_4 and X_4 .

Or

b) i) The Kernels of Homomorphism from a group of (G, *) to (G', *) is a subgroup of G. Justify.

(5 marks)

ii) State Cayley's Theorem.

(5 marks)

 $[5 \times 10 = 50 \text{ marks}]$

· Prove the group is Abol:

D	9	3	6	7	5
	•	•	•	•	•

(Pages: 2)

Name		
Reg.	No	

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE [2019 SCHEME] EXAMINATION, NOVEMBER 2020

Information Technology

IT 19 303—PROGRAMMING IN C

Time: Three Hours

Maximum: 100 Marks

Part A

Answer any ten questions. Each question carries 5 marks.

- List and explain the types of header files in C.
- 2. What is the significance of an algorithm and a flowchart?
- 3. Why C is called structured language? Explain.
- 4. Write a C program to find the sum of two matrices of order 2*2.
- List the applications of arrays.
- 6. What is a function? Explain with an example.
- Explain Bit Fields.
- 8. What is the difference between Union and Structure?
- 9. How is a Union declared? Show with an example.
- Explain the use of the malloc() function.
- 11. When is the dereferencing operator used? Give example.
- 12. What is the use of Dot (.) Operator? Explain with an example program.
- 13. Discuss in brief dynamic memory allocation.
- 14. What is the use of realloc()?
- 15. What is the purpose of free()?

 $(10 \times 5 = 50 \text{ marks})$

Part B

Answer one full section from each question. Each question carries 10 marks.

16. a) Write a C program with algorithm and flowchart for converting the temperature from Celsius to Fahrenheit.

Or

b) Write a C program to find the greatest among three numbers using if- else and if - else - if.

Turn over

17. a) Define jagged array. Write a program to implement jagged array.

Or

- b) State the advantages of a function. How you will declare and call a function? Show with an example.
- 18. a) Write a C program to pass structure as a arguments.

Or

- b) Write a C program to define pointer to structure.
- 19. a) Explain pointer arithmetic with example program.

Or

- b) Explain arrays of pointers with example program.
- 20. a) Explain the various operations for file handling.

Or

and the second s

and the second of the second o

that we will discount the first design at the second of the

materials which the same of the same of

b) Write a simple C program to illustrate the modes in which a file can be opened.

 $(5 \times 10 = 50 \text{ marks})$

D 93676

(Pages : 2)	Name		
	Reg. No		

the state of the control of the state of the

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE [2019 SCHEME] EXAMINATION, NOVEMBER 2020

Information Technology

IT 19 304—COMPUTER ORGANIZATION AND DESIGN

Time: Three Hours

Maximum: 100 Marks

letai de Monte de letai Part A

Each question carriers 5 marks. Answer any ten questions.

1. Explain the functional units of a computer.

The carried by seed of the seed of the carried by

- 2. What is the purpose of Instruction Register (IR), Memory Address Register (MAR) and Memory
- 3. Define a bus. Explain its types in brief.
- 4. (a) Perform the arithmetic operations (+42) + (-13) and (-42) (-13) in binary using the signed-2's-complement representation for negative numbers.
 - (b) Perform subtraction with the following unsigned decimal numbers by taking the 10's complement of the subtrahend.
 - (i) 5250 1321; and (ii) 1753 8640. the self-defending to seen particularly segment of the
 - Discuss the Instruction Set Architecture.
 - Explain the memory hierarchy in brief.
 - Differentiate static RAM and dynamic RAM.
 - Write short notes on (i) PROM; and (ii) EPROM.
 - Explain the significance of floating-point representations.
 - Explain the concept of the virtual memory and its types. 10.
 - Discuss the features and significance of magnetic disks. 11.
 - Explain the arithmetic and logic unit with neat block diagram.
 - Define hazards and explain the types of hazards. 13.

- 14. Briefly explain the importance of a pipeline process.
- Describe bus arbitration.

 $(10 \times 5 = 50 \text{ marks})$

Part B

Answer one full section from each question.

Each question carries 10 marks.

16. (a) What is Addressing Mode? Explain in detail the different types of addressing modes.

Or

- (b) Give examples for zero-address, one-address, two-address, and three-address instructions and illustrate the concept.
- 17. (a) With a neat diagram explain the booths algorithm.

Or

- (b) (i) Differentiate between CISC scalar processor and RISC scalar processor. (5 marks)
 - (ii) Write short notes on cache memory organization. (5 marks)
- 18. (a) Give the structure of semiconductor RAM memories. Explain read and write operations in detail.

Or

- (b) Compare paging and segmentation mechanism for implementing virtual memory.
- 19. (a) Explain in detail the basic types of shift registers.

Or

- (b) What is Direct Memory Access (DMA)? List the various DMA channels. Explain DMA controller with a neat sketch.
- 20. (a) Explain in detail about interrupt handling.

Or

(b) Write short notes on magnetic tape and optical drivers. Explain their functionalities.

 $(5 \times 10 = 50 \text{ marks})$

trained by the strain per law to the

D 93677	(Pages: 3)	Name
		Reg. No

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE [2019 SCHEME] EXAMINATION, NOVEMBER 2020

Information Technology

IT 19 305—SWITCHING THEORY AND LOGIC DESIGN

Time: Three Hours

Maximum: 100 Marks

Part A

Answer any ten questions.

Each question carries 5 marks.

- 1. i) Convert $(136)_8$ to base 2 and base 16.
 - ii) Convert (110101)2 to base 8 and 16.
- 2. i) Add the binary numbers 00111 and 10101 and show the equivalent decimal addition.
 - ii) Subtract the binary number 00111 from 10101 and show the equivalent decimal subtraction.
- 3. i) Multiply $(10010)_2$ and $(11001)_2$.
 - ii) Add $(110100111)_2$ and $(1110101)_2$.
- 4. i) Simplify the expression F = x'yz + x'yz' + xz.
 - ii) Prove the expression x'y'z' + x'yz' + xyz' = x'z' + yz'.
- 5. i) Simplify the Boolean function $f1(x, y, z) = \sum m(2, 3, 5, 7)$.
 - ii) Define fan in, fan out and propagation delay.
- 6. Simplify the Boolean expression using k-map

$$F = A'C + A'B + AB'C + BC$$

- 7. How will you convert a 4-bit binary to gray code?
- 8. Construct 16*1 multiplexer with two 8*1 and 2*1 multiplexer.
- 9. Implement the following Boolean function using 4:1 multiplexer, $F(A, B, C) = \sum m(1, 3, 5, 6)$.

- 10. Construct a JK flip-flop using a D Flip-flop, a 2-to-1 line multiplexer and an inverter.
- 11. Design a sequential circuit with two D Flip-Flops, A and B, and one input x.

When x = 0, then the state of the circuit remains the same. When x = 1, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00, and repeats

- 12. Explain the working procedure of serial-in serial-out shift register.
- Explain in detail about RAM and its types.
- 14. Implement the following two Boolean functions with a PLA:

$$F1(A, B, C) = \sum (0, 1, 2, 4)$$

 $F2(A, B, C) = \sum (0, 5, 6, 7)$

15. What is memory unit and memory deciding?

 $(10 \times 5 = 50 \text{ marks})$

Part B

Answer one full section from each question. Each question carriers 10 marks.

16. (a) Perform the following operations:

(i) Add
$$(4712)_8$$
 and $(1624)_8$. (2 marks)

(ii) Subtract
$$(232)_8$$
 from $(417)_8$. (2 marks)

(iii) Perform hexadecimal addition of
$$(B49C)_{16}$$
 and $(4E2F)_{16}$. (2 marks)

(iv) Perform hexadecimal subtraction of
$$(C92D)_{16}$$
 from $(7F9E)_{16}$. (2 marks)

Or

Perform the following operations:

(2 marks)

- (iii) Convert $58.75 \div 23.5$ to binary form and then perform division operation. (2 marks)
- (iv) Divide the following binary number 11001.11 ÷ 1101.

(2 marks)

(v) Add binary numbers 10011.1₂ + 11011.01₂.

(2 marks)

17. (a) Simplify the following expression to sum of product using Tabulation Method $f\left(a,b,c,d\right) = \sum_{i=0}^{\infty} \left(0,1,2,3,4,6,7,11,12,15\right).$

Or

- (b) Simplify the Boolean expression using k-map F = A'C + A'B + AB'C + BC.
- 18. (a) Design a full subtractor and derive expression for difference and borrow. Realize using two half subtractor.

Or

- (b) How to design a 2 bit magnitude comparator with 3 outputs A > B, A = B, A.
- 19. (a) A sequential circuit with two D Flip-Flops, A and B; two inputs, x and y; and one output, z, is specified by the following next-state and output equations:

$$A(t+1) = x'y + xA$$
$$B(t+1) = x'B + xA$$

z = B

(i) Draw the logic diagram of the circuit.

(3 marks)

(ii) List the state table for the sequential circuit.

(3 marks)

(iii) Draw the corresponding state diagram

(4 marks)

Or

- (b) Summarize the characteristic table and equation of JK flip flop.
- 20. (a) Implement the following two Boolean functions with a PAL.

$$w(A, B, C, D) = \sum (2, 12, 13)$$

 $x(A, B, C, D) = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15)$
 $y(A, B, C, D) = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$
 $z(A, B, C, D) = \sum (1, 2, 8, 12, 13).$

Or

(b) Design a combinational circuit using a ROM. The circuit should accept a 3-bit number and generate an output binary number equal to the square of the input number.

 $[5 \times 10 = 50 \text{ marks}]$